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Multi-location USDA-ARS research efforts:

* GRACEnNet Project (30 locations): Greenhouse Gas Reduction and Carbon Enhancement Network

O REAP Project (24 locations): Renewable Energy Assessment Project

Biochar and Pyrolysis Initiative (15 locations) Agricultural
] . ] ] M Research
Ongoing field plot trial (6 locations)
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Cave Drawings

Biochar: New purpose not a new material

Pyrolysis, carbonization, and coalification are well establish
conversion processes with long research histories Used as fuel

(3000-4000 BC)

Prior emphasis: M

Conversion of biomass to liquids (bio-olils) or ’c‘“
-1:‘5’:‘{:‘ gaseous fuels and/or fuel intermediates Water firation
Tommmc Solid byproduct (biochar) has long been i
considered a “undesirable side product” _Ll{J

(Titirici et al., 2007)

Charcoal production
(15% century)
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Cave Drawings

Biochar: New purpose not a new material w4

Pyrolysis, carbonization, and coalification are well establish

conversion processes with long research histories Ul
Except: \
Prior emphasis: ) ‘
Conversion of biomass to liquids (bio-oils) or ’/v‘
. gaseous fuels and/or fuel intermediates Water filtration
Solid byproduct (biochar) has long been ‘2022;
considered an “undesirable side product ﬂﬂ'

(Titirici et al., 2007)

Charcoal production

>What IS neW (15t century)
The use (or purpose) for the creation of Fv
Charred blomaSS Climate Change Mitigation

(1980s)

»Atmospheric C sequestration
Dates to 1980’'s and early 2000’s

(Goldberg 1985; Kuhlbusch and Crutzen, 1995; Lehmann, 2006)




Carbon Sequestration Rates

Cropland

Forest
Grassland / Prairie

Swamp / Floodplain / Wetland

Biochar - Goal Is to increase rates of C sequestration




Biochar: Black Carbon Continuum

Problem - Lack of nomenclature uniformity @onesetal., 1997

Oxygen to carbon (0O:C) molar ratio

0.25 0.5 0.75

I l I l l:

—

Combustion condensates | Combustion residues |
0.6

[ Thermo-chemical conversion products

Complete new structure Retains relic forms of parent material

Adapted from Hedges et al., 2000; Elmquist et al., 2006




Biochar: Black Carbon Continuum

Biochar — Spans across multiple divisions in the Black C Continuum
However, biochar is NOT a new division...

Oxygen to carbon (0:C) molar ratio

0.25 CiS IJ)JS :
—

Combustion condensates | Combustion residues |
0.6

[ Thermo-chemical conversion products ]

Complete new structure Retains relic forms of parent material

Adapted from Hedges et al., 2000; Elmquist et al., 2006




Comparisons of Natural vs. Synthetic

Natural Biochar

Synthetic (Pyrolysis) Biochar

-Heterogeneous feedstock
- Impurities
- Solil and oxygen
- Minerals (metals) alter yields

(e.g. Robertson, 1969; Bonijolya et al., 1982; Baker, 1989)

- Multiple feedstock sources
- Species and types

-Variable temperature
- 801to 1000 °C

-Air cooled/Precipitation/Solar (UV)

- Exposed to environmental conditions

-Pure homogeneous feedstock

-“Constant” temperature
- Industrial Process

-Typically cooled under anaerobic
conditions (no water)




Biochar: Soll Stability

»Over a 100 year history of research

Potter (1908) — Initial observation of
fungi/miCFObial degradation Of I|gn|te (low grade coal/charcoal)

Biochar Degradation Study
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Possible Stability Explanation=>» O:C Ratio

Biochar
Degradation
Study

Residence
Time (yr)

Baldock and
Smernik (2002)

100-500

Bird et al.
(1999)

50-100

Cheng et al.
(2008)

1000

Forbes et al.
(2006)

Millennia
based on C-
dating

Hamer et al.
(2004)

40 (charred
straw residuye)
80 (charred

(AY
WOUU)

Hammes et al.
(2002)

Aalf-life (years)

200-600

Harden £t al.

1000-2000

(2000)

Liang et al.
(2008)

several
centuries t
millennia

Lehmann et al.
(2006)

100’s

Middelburg et
al. (1999)

10,000 to
20,000

Steinbeiss et
al. (2009)

<30

Swift (2001)

1,000-10,000

Zimmerman
(2010)

100-10,000

ty /2>1OOO yrs

100 yrs < o < 1000 yrs

typ < 100 yrs

0.0 0.1 0.2 0.3 0.4 0.5

O:C molar ratio

0.6 0.7 0.8

Summary of existing literature studies (n=35) on half-life estimation of biochar [Figure from Spokas (2010)]




Proposed Biochar Mechanisms

. Alteration of soll physical-chemical properties

v pH, CEC, decreased bulk density, increased water
holding capacity

. Biochar provides improved microbial habitat
. Sorption/desorption of soil GHG and nutrients

. Indirect effects on mycorrhizae fungi through
effects on other soil microbes

v Mycorrhization helper bacteria - produce

furan/flavoids beneficial to germination of fungal é
spores 1‘:

|
m‘

Warnock et al. (2007)



Soll Microbe Impacts: Laboratory Incubations

 \We know when we are sick....

Fever, aches, pains.....

* How about for soil microbes: @

* Look at their “products” — e.g. CO,, CH,, N,O

* Implications on the rates of reaction and
amount of gases produced

*Provide clues into the mechanisms




Biochar impacts on Soil Microbes & N Cycling

> 44 different biochars evaluated
> 11 different biomass parent materials

» Hardwood, softwood, corn stover, corn cob,
macadamia nut, peanut shell, sawdust, algae,
coconut shell, turkey manure, distillers grain

- Represents a cross-sectional sampling of
available “biochars”

> C content 1 to 84 %
> N content 01 to 2.7 %
> Production Temperatures 350 to 850 °C
> Variety of pyrolysis processes

> Fast, slow, hydrothermal, gasification




Laboratory Biochar Incubations

® Soll Incubations:

® Serum bottle (soll + biochar)
® 5 g soil mixed with 0.5 g biochar
(10% w/w) [GHG production]
® Field capacity and saturated

® Mason Jar (biochar mixed &
Isolated)

® Looking at impact of biochar
without mixing with soill
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Biochar isolated or mixed with soll

CH, Oxidation
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Ethylene Impacts £ % &/

. . . RN %
Soil Microbial Impacts 3 2 }9\-‘9%.
v’Induces fungal spore germination NV SIS
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Closer
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Brief Overview of N-cycle

Nitrate (NO;)
4

Nitric Oxide (NO)

\ Nitrous Oxide (N,O)
Nitrogen Gas (N,)

Emitted to atmosphere



Putting the pieces together: Not quite a full picture yet...

(./ Nitrogen Uptake (plants/microbes)

[

Decreased
Ammonium (NH,*) s Nltrlflcatlon /

Increased

amounts Nltrate (NOy)
o,
2
Nitric Oxide (NO)
2

Nitrous Oxide (N,O)

Nitrogen Gas (N,)



Ethylene Production

Ethylene could provide a mechanism behind reduced
nitrification/denitrification activity

*Clough et al. (2010) also hypothesized that a-pinene
could be involved as a nitrification inhibitor
» a-pinene observed as volatile from vegetation

> Involved in insects’ chemical communication
system

*Despite the different chemicals — Same mechanism:
Chemical inhibitors behind the suppression of
N,O production




Headspace Thermal Desorption GC/MS scans of biochars
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Biochar has a variety of sorbed volatiles = range of potential microbial inhibitors




Impact of Biochar Volatiles in Soils

Volatile organic compounds can interfere with microbial processes

» Terpenoids — interfere with nitrification amarai et a. 1998; white 1004

 Furfural + derivatives — inhibits microbial fermentation & nitrification couaier et .

2006; Datta et al. 2001)

« Benzene, Esters — Also inhibit microbial reactions
 Still ongoing and developing research area in the plant/microbe research area

Alterations in VOC content could be sensitive indicators of soll
conditions (Leff and Fierer, 2008).

Sorbed BC volatiles could interfere with microbial signaling
(communication): Releasing or sorb signaling compounds




Conclusions

Another piece to the puzzle: Ethylene + sorbed VOC's

— Sorbed volatiles and degradation products (ethylene) should be included in
the potential biochar mechanisms

— Microbial inhibitors — Could also explain plant effects

Reduction in N,O production : Consequence of sorbed volatiles impacting the
nitrification process

. Accumulation of NH*, and decreased NO-; production
. Length of impact ?

No absolute “Biochar” consistent trends: Highly variable and different responses
to biochar as a function of soil ecosystem (microbial linkage) & position on black

2

carbon continuum:
Typically:
. Reduced basal CO, respiration
. Reduced CH, oxidation activity

. Reduced N,O production activity l l
. Reduced NO, production (availability)

. Increased extractable NH, concentrations

. Exceptions DO exist
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“The Nation that destroys its soil destroys itself”
Franklin D. Roosevelt



